Las tres clases de fórmulas

Una fórmula es una regla que relaciona magnitudes. La regla puede ser una ecuación, una desigualdad u otra descripción matemática. Explicare muchas fórmulas. A menos que se sepa por qué cada una de ellas es correcta, es posible llegar a confundirlas a medida que se acumulan. Afortunadamente, sólo existen tres formas en las que las fórmulas pueden expresarse; su conocimiento hará que el estudio de la electrónica sea mucho más lógico y satisfactorio.

La definición

Cuando se estudia electricidad y electrónica es necesario memorizar nuevas palabras como corriente, tensión y resistencia. Sin embargo, una explicación verbal de las mismas no es suficiente, ya que, por ejemplo, en el caso de la corriente, la idea que se tenga debe ser matemáticamente idéntica a la de cualquier otra persona. La única forma de conseguir esta identidad es mediante una definición, una fórmula inventada para definir un nuevo concepto.

Veamos un ejemplo de definición. En cursos anteriores habrá aprendido que la capacidad es igual a la carga de una placa dividida por la tensión entre las placas de un condensador. La fórmula es la siguiente:

Esta fórmula es una definición. Dice qué es la capacidad C y cómo calcularla. En el pasado, algunos investigadores idearon esta definición y llegó a ser ampliamente aceptada.

A continuación, tenemos un ejemplo de cómo crear una nueva definición partiendo de cero. Supongamos que estamos investigando técnicas de lectura y necesitamos medir de alguna manera la velocidad de lectura. Para empezar, podríamos definir la velocidad de lectura como el número de palabras leídas en un minuto. Si el número de palabras es W y el número de minutos es M, podemos escribir una fórmula como la siguiente:

En esta ecuación, S es la velocidad medida en palabras por minuto.

Para ser más creativos, podemos emplear letras griegas: ω para las palabras, μ para los minutos y σ para la velocidad. La definición quedaría entonces del siguiente modo:

Esta ecuación continúa indicando que la velocidad es igual al número de palabras dividido entre los minutos. Cuando vea una ecuación como ésta y sepa que se trata de una definición, ya no le parecerá tan misteriosa como inicialmente pudiera parecer.

En resumen, las definiciones son fórmulas que un investigador crea. Están basadas en observaciones científicas y constituyen las bases del estudio de la electrónica. Son aceptadas simplemente como hechos. Esto siempre se ha hecho en la ciencia. Una definición es cierta en el mismo sentido que una palabra es cierta; cada una representa algo de lo que queremos hablar. Cuando se sabe qué fórmulas son definiciones, la electrónica resulta más fácil de comprender. Dado que las definiciones son puntos de partida, todo lo que hay que hacer es entenderlas y memorizarlas.

La ley

Una ley es otra cosa. Una ley resume una relación que ya existe en la naturaleza. Un ejemplo de ley es:

Donde

ƒ = fuerza

Κ = constante de proporcionalidad, 9(109)

Q1= primera carga

Q= segunda carga

d = distancia entre las cargas

Ésta es la ley de Coulomb, que establece que la fuerza de atracción o repulsión entre dos cargas es directamente proporcional a las cargas e inversamente proporcional al cuadrado de la distancia entre ellas.

Es una ecuación importante porque en ella se fundamenta la electricidad. Pero, ¿cómo se ha obtenido? Y ¿por qué es cierta? En principio, todas las variables de esta ley ya existían antes de su descubrimiento. Experimentando, Coulomb fue capaz de demostrar que la fuerza era directamente proporcional a cada carga e inversamente proporcional al cuadrado de la distancia entre ellas. La ley de Coulomb es un ejemplo de una relación existente en la naturaleza. Aunque investigadores anteriores consiguieron medir ƒ, Κ, Q2 ,Q2 , d, Coulomb descubrió la ley relacionando las magnitudes y escribió la fórmula para ello.

Antes de descubrir una ley, alguien debe tener el presentimiento de que tal relación existe. Después de numerosos experimentos, el investigador escribe la fórmula que resume el descubrimiento. Cuando suficientes personas confirman mediante experimentos el descubrimiento, la fórmula se convierte en una ley. Una ley es verdadera porque es posible verificarla mediante un experimento.

La derivación

Dada una ecuación como la siguiente:

podemos sumar 5 a ambos miembros para obtener:

La nueva ecuación es cierta porque ambos lados siguen siendo iguales. Existen otras muchas operaciones como la resta, la multiplicación, la división, la factorización y la sustitución que hacen que se conserve la igualdad en ambos lados de la ecuación. Por esta razón, podemos deducir muchas nuevas fórmulas utilizando las matemáticas.

Una derivación es una fórmula que se puede obtener a partir de otras fórmulas. Esto quiere decir que partiendo de una o más fórmulas y usando las matemáticas se llega a obtener una nueva fórmula que no se encontraba dentro del conjunto original de fórmulas. Una derivación es verdadera, porque matemáticamente se mantiene la igualdad de ambos lados de cada una de las ecuaciones por las que se pasa desde la fórmula inicial hasta llegar a la fórmula derivada.

Por ejemplo, Ohm experimentó con conductores. Descubrió que la relación entre la tensión y la corriente era una constante, que la denominó resistencia y escribió la siguiente fórmula para definirla:

Ésta es la forma original de la ley Ohm. Reordenándola, obtenemos:

que es una derivación. Es la forma original de la ley de Ohm convertida en otra ecuación. Veamos otro ejemplo. La definición de capacidad viene dada por la expresión:

Podemos multiplicar ambos lados por V para obtener la siguiente nueva ecuación:

que es una derivación, que dice que la carga en un condensador es igual a su capacidad multiplicada por la tensión que cae en él.

Recuerde que…

¿Por qué una fórmula es verdadera? Hay tres posibles respuestas. Para asentar bien sus fundamentos electrónicos, clasifique cada nueva fórmula dentro de una de estas tres categorías:

Definición: una fórmula inventada para un nuevo concepto.

Ley: una fórmula para una relación que existe en la naturaleza.

Derivación: una fórmula obtenida matemáticamente.

Descargar PDF:

 

Fuentes:

Libro Principios de Electrónica, Séptima edición, Albert Malvino, capítulo 1.

 

Dejar un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *